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Abstract. A new method for the non-perturbative calculation of Green functions in quantum
mechanics and quantum field theory is proposed. The method is based on an approximation
of the Schwinger–Dyson equation for the generating functional by an exactly soluble equation
in functional derivatives. Equations of the leading approximation and the first step are solved
for the φ4

d -model. At d = 1 (anharmonic oscillator) the ground-state energy is calculated.
The renormalization programme is performed for the field theory atd = 2, 3. At d = 4 the
renormalization of the coupling involves a trivialization of the theory.

1. Introduction and general considerations

For many years the construction of non-perturbative approximate solutions has remained an
urgent problem of quantum field theory.

In the present work a method for the construction of such approximations is proposed.
The method is based on an approximation of the Schwinger–Dyson equation for the
generating functional by a simple equation in functional derivatives, which can be solved
exactly. This solution is a foundation for the linear iterative scheme. Each step of the
scheme consists of solving a closed system of integral equations.

The leading approximation and the first step are investigated by the method for the
φ4
d -model. At d = 1, when the model corresponds to the anharmonic oscillator, a formula

for the ground-state energy is obtained. Atd = 2, 3 (super-renormalizable field theory)
the renormalization of the leading approximation and the first step is performed. Atd = 4
(strictly renormalizable case) the renormalization of the coupling leads to a non-physical
singularity of the amplitude. This is a reflection of the well known triviality problem for
theφ4

4-theory in a non-perturbative region.
Consider the theory of a scalar fieldφ(x) in Euclidean space(x ∈ Ed) with the action

S(φ) =
∫

dx

{
1

2
(∂µφ)

2+ m
2

2
φ2+ λφ4

}
. (1)

The generating functional of the 2n-point Green functions can be written as

G =
∞∑
n=0

G2nηn (2)

whereη(x, y) is a bilocal source. Thenth derivative ofG overη with the source switched
off is the 2n-point Green functionG2n.
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The use of the bilocal source is an essential point of the scheme presented here; therefore
we shall consider the theory without spontaneous symmetry breaking withm2 > 0. A brief
discussion of the theory with a single source and with spontaneous symmetry breaking is
contained at the last section. Atd > 2 corresponding counterterms should be included in
the action for the cancellation of ultraviolet divergences.

A simple way to obtain the Schwinger–Dyson equation for the generating functional
with a bilocal sourceη(x, y) is to use the usual Schwinger–Dyson equation with a single
sourcej (x) in the presence of a bilocal sourceη:

4λ
δ3G

δj3(x)
+ (m2− ∂ 2)

δG

δj (x)
= j (x)G+ 2

∫
dx ′ η(x, x ′)

δG

δj (x ′)
. (3)

Differentiating equation (3) overj (y) and using the connection condition

δ2G

δj (x)δj (y)
= δG

δη(y, x)

after switching off the single sourcej we obtain the following equation:

4λ
δ2G

δη(y, x)δη(x, x)
+ (m2− ∂ 2)

δG

δη(y, x)
− 2

∫
dx ′ η(x, x ′)

δG

δη(y, x ′)
− δ(x − y)G = 0.

(4)

which contains only the sourceη.
The idea of the iterative scheme presented here is as follows: we shall consider ‘an

equation with constant coefficients’ as a leading approximation, i.e. equation (4) with the
next-to-last term omitted. This term contains the sourceη manifestly. The Green functions
are the derivatives ofG(η) at zero and only the behaviour ofG nearη = 0 is essential,
therefore such an approximation seems to be acceptable. The equation of the leading
approximation will be

4λ
δ2G0

δη(y, x)δη(x, x)
+ (m2− ∂ 2)

δG0

δη(y, x)
− δ(x − y)G0 = 0. (5)

The term omitted contains the source and should be treated as a perturbation. Hence, the
iteration procedure for the generating functional

G = G0+G1+ · · · +Gn + · · · (6)

consists of the step-by-step solution of the equations

4λ
δ2Gn

δη(y, x)δη(x, x)
+ (m2− ∂ 2)

δGn

δη(y, x)
− δ(x − y)Gn = 2

∫
dx ′ η(x, x ′)

δGn−1

δη(y, x ′)
.

(7)

The solution of the leading approximation equation (5) is a functional:

G0 = exp
∫

dx dy η(y, x)40 (x − y) (8)

where40 is a solution of the equation

4λ40 (0)40 (x − y)+ (m2− ∂ 2)40 (x − y) = δ(x − y). (9)

At d > 2 the quantity40(0) must be considered as some regularization.
Equation (9) looks like the self-consistency equation, but differs in the coefficient

for λ: in the self-consistency equation the coefficient is three times greater. In this sense
equation (9) is more similar to the equation for the propagator in the leading approximation
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of the 1/N -expansion. Certainly the similarity is completely superficial, since the principle
of the construction of the approximation scheme is different.

The solution of equation (9) is a free propagator

40 = 1

µ2− ∂2
(10)

with the renormalized massµ2 = m2 + 4λ40 (0). The quantity40(0) is defined from the
self-consistency condition.

The propagator is a first derivative ofG(η) over the sourceη: 4 = δG/δη|η=0. As can
easily be seen, it is simply40 for the leading approximation.

Note that all higher Green functions of the leading approximation starting with the
four-point functionG4 = δ2G/δη2|η=0 do not possess the correct connected structure and,
correspondingly, the complete bose symmetry. The correct connected structure and other
consequences of bose symmetry (e.g., crossing, etc) will be restored in consecutive order
in the subsequent steps of the iteration scheme. This is easy to see, for example, by
analysing the iteration scheme equations atλ → 0. Such a peculiarity of the iteration
scheme originates from the bilocal source and is not something exceptional: as is well
known, a similar phenomenon also appears in the construction of the 1/N -expansion in the
bilocal source formalism.

The first-step equation for the generating functionalG1 reads

4λ
δ2G1

δη(y, x)δη(x, x)
+ (m2− ∂ 2)

δG1

δη(y, x)
− δ(x − y)G1

= 2
∫

dx ′ η(x, x ′)40 (x
′ − y)G0 (11)

A solution of equation (11) is sought in the formG1 = P1(η)G0, whereP1 = 1
2Fη

2+41η.
Taking into account the leading approximation, equation (11) gives a system of equations
for F and41:

(µ2− ∂ 2
x)F

(
x y

x ′ y ′

)
+ 4λF

(
x x

x ′ y ′

)
40 (x − y)

= δ(x − y ′)40 (x
′ − y)+ δ(x − x ′)40 (y − y ′) (12)

(µ2− ∂ 2)41 (x − y)+ 4λ41 (0)40 (x − y)+ 4λF

(
x x

x y

)
= 0. (13)

Equation (12) is the linear integral equation for the functionF in the momentum space. A
solution of the equation is

F

(
x y

x ′ y ′

)
= 40(x − y ′)40 (x

′ − y)+40(x − x ′)40 (y − y ′)

−4λ
∫

dx1 dy1 40 (x − x1)40 (y − x1)K(x1− y1)

×40 (y1− x ′)40 (y1− y ′) (14)

where the kernelK is a solution of the equation

K(x − y) = 2δ(x − y)− 4λ
∫

dx ′ L(x − x ′)K(x ′ − y) (15)
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andL(x−y) ≡ 42
0(x−y) is a single loop. Equation (15) can easily be solved in momentum

space. Its solution is

K̃(p) = 2

1+ 4λL̃(p)
. (16)

Note that the first two terms in equation (14) forF are the missing connected structure
of the four-point function to leading approximation. Hence the connected structure of the
four-point function is restored at the first iteration step.

To solve equation (13) for41 is also quite simple. Taking into account the formulae
above, the solution can be written as

41(x − y) = −
∫

dx ′ dy ′ 40 (x − x ′)6r(x ′ − y ′)40 (y
′ − y) (17)

where

6r(x − y) = [4λ41 (0)+ 8λ40 (0)]δ(x − y)+6(x − y) (18)

6(x − y) = −(4λ)240 (x − y)
∫

dx ′ L(x − x ′)K(x ′ − y). (19)

The quantity41(0) is defined by the self-consistency condition.
At λ→ 0, as is easy to see,4 = 40+41 = 4pert+O(λ2), where4pert is the propagator

of the perturbation theory, i.e. at smallλ the first-step propagator reproduces correctly the
first term of the usual perturbation theory in the coupling.

In the general case, the solution of equation (7) for thenth step of the iteration scheme
is

Gn = Pn(η)G0 (20)

wherePn is a polynomial inη of a degree 2n. Therefore at thenth step the computation
of Green functions reduces to solving a system of 2n linear integral equations.

2. The anharmonic oscillator

At d = 1 the model with the action (1) describes the quantum mechanical anharmonic
oscillator. The parameterm2 corresponds in the case to a frequency of a harmonic oscillator
described by quadratic terms. Atd = 1 ultraviolet divergences are absent, and the quantities
40(0) and41(0) are finite. Consequently, equations (8)–(19) are applied directly for the
computation of Green functions.

Since40(0) = 1/2µ at d = 1, the self-consistency condition becomes the equation for
a renormalized mass (or, more exactly, for a ‘renormalized frequency’)µ2:

µ2 = m2+ 2λ

µ
. (21)

Hereµ =
√
µ2. The equation has a unique positive solution at all positivem2 andλ.

To calculate a ground-state energyE one can use the well known formula (see, for
example, [1, 2])

dE

dλ
= G4(0, 0, 0, 0). (22)

In this formulaG4 is the four-point (or two-particle) function:G4 = (1/G)δ2G/δη2|η=0.
With the formulae above for the Green functions to leading approximation and the first step,
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we obtain the following formula for the ground-state energy of the anharmonic oscillator:

dE

dλ
= 1

4µ2
+ 1

µM

(
1− 2λ

λ+ µ3

(
1− 2λ

µ(M + 2µ)2

))
. (23)

HereM =
√

4µ2+ 4λ/µ. Integrating the formula with a boundary conditionE|λ=0 = m/2
taken into account, one can calculate the ground-state energy for all values of the coupling:
06 λ <∞.

At λ→ 0, E = m( 1
2 + 3

4λ/m
3 +O(λ2)), and the perturbation theory is reproduced up

to second order.
At λ→∞, E = ε0λ

1/3+O(λ−1/3), andε0 = 0.756. The coefficientε0 differs by 13%
from the exact numerical oneεexact

0 = 0.668 (see, for example, [3]).
At λ/m3 = 0.1 the result of the calculation with equation (23) differs from the exact

numerical one [3] by 0.8%, and atλ/m3 = 1 differs by 6.3%.
Consequently, the first-step equation (23) approximates the ground-state energy for all

values ofλ with an accuracy that varies smoothly from 0 (atλ→ 0) to 13% (atλ→∞).
Comparing these results with the results of other approximate methods, in particular those
of variational perturbation theory (VPT) [1, 2] orδ-expansion [4], we can see that this
method gives the best results for the intermediate coupling regionλ ∼ 0.1m3. In fact, at
λ/m3 = 0.1 the accuracy of first step of the calculations is better than that of the fifth step
of VPT (see [2, table 6]) and five times higher in comparison with the usual perturbation
theory to orderO(λ5). However, for the asymptotic region of strong coupling the accuracy
of the given calculations is not so good, and other methods such as VPT give more exact
results atλ→∞. It seems likely that a combination of the method proposed with VPT-type
methods would give good results for all coupling values.

3. Super-renormalizable theory (d= 2 and d= 3)

At d > 2 the action (1) should be added by counterterms for the elimination of ultraviolet
divergences. First consider the super-renormalizable theory (d = 2 and d = 3). It
is sufficient to add counterterms of mass renormalization1

2δm
2φ2 and wavefunction

renormalization1
2δz(∂µφ)

2 in this case. The Schwinger–Dyson equation has the form of
equation (4) with the substitution

m2→ m2+ δm2 ∂2→ (1+ δz)∂2. (24)

There is no need to add a wavefunction renormalization counterterm for the leading
approximation, and the equation of the leading approximation will be

4λ
δ2G0

δη(y, x)δη(x, x)
+ (δm2

0+m2− ∂ 2)
δG0

δη(y, x)
− δ(x − y)G0 = 0. (25)

The LHS of the iteration scheme (7) is of the same form as the LHS of (25). At
n > 1 the countertermsδm2

n and δzn should be considered as perturbations. Therefore
the corresponding terms should be added to the RHS of equation (7). So, the first-step
equation will be

4λ
δ2G1

δη(y, x)δη(x, x)
+ (δm2

0+m2− ∂ 2)
δG1

δη(y, x)
− δ(x − y)G1

= 2
∫

dx ′ η(x, x ′)
δG0

δη(y, x ′)
− δm2

1
δG0

δη(y, x)
+ δz1∂

2 δG0

δη(y, x)
. (26)
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The normalization condition on the physical renormalized massµ2 gives us a mass
renormalization counterterm in the leading approximation

δm2
0 = µ2−m2− 4λ40 (0). (27)

This counterterm diverges logarithmically atd = 2 and linearly atd = 3.
For the first step of the iteration equation (12) forF remains unchanged, and its

solution is described by the same equations (14)–(16). The equation for41 changes in
correspondence with equation (26). Its solution can be written in the same form (17), but
now for6r one gets

6r = 4λ41 (0)+ δm2
1− 2δm2

0− δz1∂
2+6 (28)

where6 is given by equation (19). The normalization conditions

6̃r (−µ2) = 0 6̃′r (−µ2) = 0 (29)

give us the counterterms of the first step

δz1 = −6̃′(−µ2)

δm2
1 = 2δm2

0− 4λ41 (0)− 6̃(−µ2)− µ26̃′(−µ2).
(30)

The renormalized mass operator is

6̃r (p
2) = 6̃(p2)− 6̃(−µ2)− (p2+ µ2)6̃′(−µ2) (31)

where, in correspondence with (19),

6̃(p2) = −(4λ)2
∫

dq

(2π)d
1

µ2+ (p − q)2
2L̃(q2)

1+ 4λL̃(q2)
. (32)

The countertermδz1 is finite at d = 2, 3. The countertermδm2
1 diverges as that of the

leading approximation does, namely, logarithmically atd = 2 and linearly atd = 3. As
the simple loopL̃(p2) behaves forp2 → ∞ as (1/p2) log(p2/µ2) at d = 2 and 1/

√
p2

at d = 3, the integral (32) for6̃(p2) converges atd = 2 and diverges logarithmically at
d = 3. Certainly the renormalized mass operator (31) is finite in any case.

A part of the ‘redundant’ subtractions in equation (31) is completely unclear from the
point of view of the usual perturbation theory divergences. This part becomes clear at the
strong coupling limit in equations (31), (32). Really, atλ→∞

6̃(p2) = constant+
∫

dq

(2π)d
1

µ2+ (p − q)2
2

L̃(q2)
+O

(
1

λ

)
. (33)

The integral in equation (33) divergesquadratically at d = 2, 3. Hence, it becomes clear
that the ‘redundant’ subtractions conserve the finiteness of the renormalized theory in the
strong coupling limit.

4. Strictly renormalizable theory (d= 4)

At d = 4 besides the renormalizations of the mass and the wavefunction a coupling
renormalization is necessary. Therefore simultaneously with the substitution (24) the
substitutionλ→ λ+ δλ is also needed in the Schwinger–Dyson equation (4). The leading
approximation equation will be

4(λ+ δλ0)
δ2G0

δη(y, x)δη(x, x)
+ (δm2

0+m2− ∂ 2)
δG0

δη(y, x)
− δ(x − y)G0 = 0. (34)
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Due to the presence of the countertermδλ the normalization condition on the renormalized
massµ2 for the leading approximation becomes a connection between countertermsδm2

0
andδλ0:

δm2
0+ 4(λ+ δλ0)40 (0) = µ2−m2. (35)

As we shall see below, the countertermδλ0 (and, consequently,δm2
0) will be fixed at the

following step of the iteration scheme.
The first-step equation will be of the form (26) with the substitutionλ→ λ+ δλ0 in the

LHS and with an additional term−4δλ1 · δ2G0/δη(y, x)δη(x, x) in the RHS. The equation
for F will differ from equation (12) only by the substitutionλ→ λ + δλ0. Therefore the
formulae for its solution will also differ from equations (14)–(16) by the same substitution.
At d = 4 the single-loop integral̃L(p2) diverges logarithmically, and renormalization of
the coupling is necessary. Let us define a two-particle amplitude—the amputated connected
part of the four-point function:

A = 4−1
0 4−1

0 F con4−1
0 4−1

0 . (36)

Here a multiplication by4−1
0 is understood in the operator sense.F con is the connected

part ofF . It is easy to see that the amplitude depends only on a variablep = px + py and
has the form

Ã(p2) = − 8(λ+ δλ0)

1+ 4(λ+ δλ0)L̃(p2)
. (37)

Define a renormalized couplingλr as a value of the amplitude at a normalization point:

Ã(M2) = −8λr = − 8(λ+ δλ0)

1+ 4(λ+ δλ0)L̃(M2)
. (38)

From equation (38) one obtains a coupling renormalization counterterm

δλ0 = −λ+ λr

1− 4λrL̃(M2)
(39)

and renormalized amplitude

Ã(p2) = − 8λr
1+ 4λrL̃r (p2;M2)

(40)

whereL̃r (p2;M2) = L̃(p2)− L̃(M2) is a renormalized loop that possesses a finite limit at
the removal of regularization.

Taking the renormalization of the two-particle amplitude in such a manner, one can solve
the equation for41 and renormalize the mass operator in correspondence with the general
principle of normalization on the physical mass (see equation (29)). However, in the four-
dimensional case one encounters an essential obstacle. At the removal of regularization,
δλ0 → −λ. This is evident from equation (39). Therefore the coefficientλ + δλ0 in the
leading approximation (34) vanishes. The same is true for all the subsequent iterations. The
theory is then trivialized. One can observe that the expression

(λ+ δλ0) · δ2G

δη(y, x)δη(x, x)
(41)

is really an indefinite quantity of the type 0· ∞, and the renormalization is, in essence,
a definition of the quantity. However, it does not save the situation in this case, since
the renormalized amplitude (40) possesses a non-physical singularity in a deep-Euclidean
region (it is a well known Landau pole). The unique non-contradictory possibility is a choice
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λr → 0 at the removed regularization. This is again a trivialization of the theory. This
trivialization appears almost inevitably in an investigation ofφ4

4-theory beyond perturbation
theory and is a practically rigorous result (see [5]). Note that in contrast to perturbation
theory, which is absolutely non-sensitive to the triviality of the theory, the method proposed
already leads to trivialization at the first step.

5. A single source

The method considered above is based essentially on the bilocality of the source. Since the
bilocal source produces 2n-point functions only, the method cannot be applied in its present
form to a theory with spontaneous symmetry breaking when

〈0|φ|0〉 6= 0. (42)

For a description of the spontaneous symmetry breaking it is necessary to switch on a single
sourcej (x), i.e. to consider the Schwinger–Dyson equation (3).

Consider a theory with a single sourcej and with the bilocal source switched off:
η = 0. The Schwinger–Dyson equation for the generating functionalG(j) is

4λ
δ3G

δj3(x)
+ (m2− ∂ 2)

δG

δj (x)
= j (x)G. (43)

Let us apply to equation (43) the same idea of approximation by the equation with
‘constant’ coefficients, i.e. consider as a leading approximation the equation

4λ
δ3G0

δj3(x)
+ (m2− ∂ 2)

δG0

δj (x)
= 0. (44)

Then an iteration scheme will be described by the equation

4λ
δ3Gn

δj3(x)
+ (m2− ∂ 2)

δGn

δj (x)
= j (x)Gn−1. (45)

The leading approximation equation (44) has a solution

G0 = exp

{∫
dx v(x)j (x)

}
. (46)

Certainlyv does not depend onx in a translation-invariant theory. Therefore an equation
for v will be

4λv3+m2v = 0. (47)

At m2 > 0, λ > 0 the equation has the unique real-valued solutionv = 0, which
corresponds to the leading approximationG0 = 1. The iteration scheme (45) based on this
leading approximation coincides with the perturbation theory in the coupling—the leading
approximation is too simple and does not contain any non-perturbative effects.

At m2 < 0, besides this solution the following real-valued ones exist:

v = ±
√
−m

2

4λ
(48)

which correspond to spontaneous breaking of a discrete symmetry (P -parity) of φ4-theory.
A calculation of the ground-state energy based on equations of the type (22) demonstrates
that the state with spontaneous symmetry breaking is energetically preferable and so it is
a physical vacuum of the theory atm2 < 0. This is the way of describing the leading
non-perturbative effect, i.e. spontaneous symmetry breaking, by the method.
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A first-step equation with counterterms will be

4λ
δ3G1

δj3(x)
+ (m2− ∂ 2)

δG1

δj (x)
= j (x)G0− 4δλ1

δ3G0

δj3(x)
− δm2

1
δG0

δj (x)
+ δz1∂

2 δG0

δj (x)

= (j (x)− 4δλ1v
3− vδm2

1)G0. (49)

A solution of equation (49) should be sought asG1 = P1(j)G0, where P1(j) =
1
241j

2+81j . The equation for41, taking into account the leading approximation equations
(46)–(48), has a solution

41 = 1

µ2− ∂ 2
(50)

whereµ2 = −2m2 > 0. The reconstruction of the vacuum leads to the corresponding
reconstruction of the one-particle spectrum. The whole picture corresponds exactly to a
description in the effective potential language, but the notion of the effective potential is
not used at all. Subsequent iterations lead to the renormalized perturbation theory over
the physical non-symmetrical vacuum. A remarkable feature of the scheme is an absence
of symmetry breaking counterterms, even at intermediate steps in the calculation. For the
ultraviolet divergences removing the countertermsδm2, δλ andδz is sufficient.

In conclusion, note that although atm2 > 0 the values ofv in equation (48) are
imaginary, the corresponding real-valued solutions of equation (44) exist, for example

G0 = cos

{
w

∫
dx j (x)

}
(51)

wherew2 = m2/4λ. At the first step of the iteration such a leading approximation gives
tachyons and so it is physically unacceptable. It is possible that similar solutions can be
useful for an investigation of the problem of spontaneous symmetry breaking inφ4

2-theory
with m2 > 0 (see, for example, [6]). Of course, the computational scheme should be
modified in that case.
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